
Optimizing Mars Airplane Trajectory with the Application Navigation System

May 2004

Michael Frumkin,
NASA Advanced Supercomputing Division
M/S T27A- 1, NASA Ames Research Center

Moffett Field, CA 94035-1000
frumkin@nas.nasa.gov

Derek Riley
Vanderbilt University
Nashville, TN 37235

derek.riley@alumni2004~wartburg.edu

Abstract

Planning complex missions requires a number of pro-
grams to be executed in concert. The Application Navi-
gation System (ANS), developed in the NAS Division, can
execute many interdependent programs in a distributed en-
vimnmertt. We show that the AiYS simplzfies user @art and
reduces time in optimization of the trajectory of a martian
airplane. We use a software package, Cart3D, to evaluate
trajectories and a shortest path algorithm to determine the
optimal trajectory- ANS employs the “GridScape ” to repre-
sent the djnamic state of the available computer resources.
?%en, ANS uses a scheduler to dynamically assign ready
t a s k to machine resources and the GridScape for tracking
available resources and forecasting completion time of run-
ning tasks. We demonstrate system capabilip to schedule
and run the trajectory optimization application with effi-
ciency exceeding 60% on 64 processors.

Kqwords: dynamic scheduling, pelformance, naviga-
rion, trajectory optimization.

1 Introduction

Planning of future KASA missions involves a number
of applications working in concert to provide an admissible
or an optimal planning decision. These applications simu-
late various aspects of the anticipated mission environment,
evaluate various scenarios of achieving mission goals. and
evaluate multiple configurations of the vehicles to be in-
volved in the mission. The quantity of applications. sce-
narios, and configurations could be significant and would
require a substmtial mount of computer resources and hu-
man effort to perform the calculations. To reduce the time
required for the simulation and evaluation of various scenar-

ios and configurations we have developed an Application
Navigation System (ANS).

The .4NS works with applications composed of commu-
nicating tasks. It uses a task graph representation of such
applications. This mode1 can be used to represent many
data flow applications c.f. [2] ; ANS makes scheduling de-
cisions depending on the state of the tasks and the state of
the resources of the distributed system. It takes into ac-
count proporties of the distributed resources such as latency
of the communications and bandwidth of the network. A N S
performs an automatic characterization of the resources, ex-
trapolates the application’s performance to the available re-
sources, and assigns the tasks to the best resources with a
goal to minimize the application turn around time. In [S j
we have shown that this approach reduces some applica-
tions turnaround time by 25%-35%.

In this paper we demonstrate that A N S can efficiently
manage the problem of optimizinz a trajectory of a martian
airplane, Section 5. The plane has a base and a number of
fly-over targets located in a canyon on Mars. The goal is
to find the most energy efficient trajectory that starts at the
base, visits all the targets and returns to the base. To solve
this problem we choose a number of intermediate points in
the martian airspace and calculate the optimal trajectories
between each point and its closest neighbors. Then we use
a combination of the shortest path algorithm and a heuris-
tic traveling salesman algorithm to find the most efficient
trajectory. For calculation of the most efficient trajectory
between a pair of points in the martian airspace we use the
Cart3D package [3].

The architecture of the system is shown in Figure 1. We
describe the interaction between servers and navigators in
Section 3.1. and the acquisition and use of the GridScape in
Section 3.2.

The results in Section 6 show that our navigation sys-
tem achieves 60% efficiency relative to the optimal running

assigned tasks

tasks status

Figure 1. The Architecture of our Navigation
System. Each navigator executes the itera-
tions of the Navigational Cycle (see Figure 2).

time of the tasks without dependencies. In our experiments
we used 5 machines containing 1952 processors and having
peak performance of 1.5 TFLOPS, Table 1.

As an abstraction of system resources we use a Grid-
Scape, a map of the system resources represented by a di-
rected graph, where each machine and router is represented
as a node of the graph with an attached list of machine re-
sources and a history of their dynamics. Communication
links between machines are represented by the arcs of the
graph labeled with the observed bandwidth and latency of
the links. The initial information about the Gridscape is
acquired during installation of the benchmarklapplication
servers (Figure 1). The dynamic component of the Grid-
Scape is measured by means of the NAS Grid Benchmarks
(NGB) [9] during the monitoring, and by requests of the
navigators. The benchmarks represent typical activity of
Computational Fluid Dynamics applications, and their per-
formance results may be used as an indicator of the effi-
ciency of using the computer resources for these applica-
tions.

2 Related Work

2.1 Scheduling

Scheduling in a grid environment has been a popular
topic of research for several years. One type of grid applica-
tion is the so called parameter-sweep application comprised
of many independet experiments. In [4] the authors discuss
the methods of scheduling a dynamic parameter-sweep ap-
plication on a computational grid. In our case the sched-
uler must deal with large numbers of dependent tasks with
complex I/O relations. Fortunately, our main application
Cart3D allows us to compose the tasks so that they can be
executed in a data flow manner: a task can be launched as
soon as all its input data have arrived.

To manage dependencies between the tasks, we are us-
ing proposed in [5] lists to keep track of which nodes can
be executed and which nodes cannot. The authors required
the scheduler to update the "ready nodes" list after every

local schedule action it performs. They also used a criti-
cal path scheduling algorithm to improve the performance
of their tasks. We do not use the critical path algorithm for
two reasons. First, large numbers of paths in our graphs are
close to critical and, second, the length of a path can only be
calculated when all tasks have finished. Also, our tasks are
all virtually the same size and require the same amount of
computing power, so they are somewhat more predictable
than the tasks mentioned in other research papers.

Scheduling data flow graphs is an NP-complete prob-
lem unless gross assumptions are made to simplify it. Most
other research on data flow graphs conclude that simplifying
assumptions are detrimental to the quality of the scheduler.
Memory, processor, and cluster architecture are generally
accepted to be too unpredictable to simplify the scheduling
problem [lo]. However, in our case, our simplifying as-
sumptions have been tested and have been shown through
our experiments to be reliable and predictable. This is most
likely the case because we are using similar, batch scheduler
controlled systems to avoid interference with other users.

Two models of data flow graphs are generally accepted
for modeling the tasks and interconnections: task interac-
tion graphs (TIGs) and task precedence graphs (TPGs) [lo].
The TIG model is generally used for static scheduling and
the ?PG model is used for dynamic scheduling. In this
paper we use the TPG model, which is also referred to as
the directed, acyclic graph (DAG) model. When schedul-
ing a DAG, it is important to decide whether to sacrifice
efficiency of the scheduler to find an optimal solution or to
sacrifice the optimality of the solution for efficiency of the
scheduler. As our initial scheduler we used simple but ef-
ficient scheduling method that achieved about 60% of the
efficency of the schedule (relative to the optimal schedule
of the tasks without dependencies).

2.2 Mars Airplane

The dream of a Mars airplane has been pursued and re-
searched by many different scientists throughout the last
decade. Many felt that an unpiloted vehicle would be un-
able to make the judgement calls necessary for a successful
flight, but recent demonstrations of unpiloted flying vehi-
cles on Earth has eroded their theorized evidence. It is im-
portant that a flying vehicle be unpiloted because it makes
the vehicle lighter, and in the case of Mars, it also allows
the vehicle to conduct research long before humans can get
there.

A flying vehicle on Mars is important because the
wheeled rover missions are limited to a small area with rel-
atively simple terrain. An airplane would allow researchers
to cover much more distance and analyze more difficult
terrain. One of the most interesting areas on Mars to re-
searchers is the Valles Marineris, which is a canyon that is
longer than 1860 miles and up to 5 miles deep. Scientists
hope that the steep canyon walls will provide clues on the
sedimentation of the crust and possibly existence of life on
Mars.

In 1998 X4SA offered a grant to an organization that
came up with the most compelling space exploration pro-
posal. Several of the 29 proposals were for aircraft that
would explore Mars. Even though none of the missions
have been fulfilled. there has been a significant amount of
research that has gone into designing an airplane that will
fly on Mars L141.

All of the researchers who have worked on the concept
of a Mars airplane have had to deal with the same problems:
Mars’ thin atmosphere and its lack of abundant oxygen. The
thin atmosphere is equivalent to flying about 1OO.OOO or
more feet above Earth, which has been accomplished, but
only by experimental, rocket-powered craft To fly in thin
air, most of the designs have been developed to be as light
as possible with large wing surfaces. Since the gra\ ‘I - t ~ ion
Mars is only 113 the gravity on Earth, the large wing smc-
tures work quite well. Most designers have also decided to
simplify the controI surfaces to further decrease the weight
and complexity. It is important to reduce the weight because
every extra pound sent into space costs a significant amount
of money.

The lack of oxygen requires designers to find propul-
sion methods unlike those most commonly used on Earth.
Many propulsion systems have been considered for a Mars
airplane, but most designs have decided to use an electri-
callpropellor system. The benefit to an electrical system is
the fact that solar panels can be used to recharge the batter-
ies and extend the useful life of the craft The solar electrical
power system works well on Spirit and Opportunity rovers.
Another proposed propulsion system uses hydrazine, which
also requires no oxygen to provide power. Whatever the
researchers have decided to use for power, they are all inter-
ested in makmg the craft have the least amount of drag and
use the least amount of fuel.

The proposed Mars airplane will be able to collect a
wealth of scientific data. It can be designed to hold a gav-
ity gradiometer, magnetometer, electric field meter, laser al-
timeter, several optical and infrared cameras, and some de-
ployable probes. The data collected would be sent directly
back to Earth to be analyzed, so the craft would have to have
the ability to communicate to Earth without a base station
l i e many other missions [131.

3 The Application Navigation System

Consults the “GridScape” to find resources that are
able to execute these &ks;

Submits the tasks to the resources that will provide the
fastest advance of the application:

Repeats this sequence until all tasks are executed.

In order for a navigator to accomplish these functions, it
must understand an application’s requirements and know
the current state of the system resources.

In our computational environment, the application de-
scription includes the application performance model (ex-
pected execution time. parallel efficiency, memory size. size
of VO data). This performance model is based on several
runs of the tasks on an average (not extreme) initial geom-
etry. Despite the fact that convergency of Computational
Fluid Dynamic codes may significantly vary depending on
small changes in initial conditions. during our runs we ob-
served very consistent, predictable convergency of theflow-
Cart solver.

To describe the system resources, we use the GridScape
which lists the capabilities of the machines and the intercon-
nections between them. When deciding to submit a task, a
navizator uses the GridScape to match task requirements
with abilities of the current resources. It estimates the time
it will take to execute the task and assigns to it the num-
ber of processors that minimizes the application turnaround
time. In summary, the navigator performs the routine of the
navigational cycle, Figure 2. A detailed description of the
ANS can be found in [8].

F l 1 Appllcanon Performance M ~ M I ,

Figure 2. The Navigational Cycle.

3.1 The Navigational Cycle
3.2 The GridScape

In our navigation system. tasks are assigned to the ma-
chine resources by the navigators, Figure l . The decision
to accept or reject an assigned task is performed by a server
based on it‘s o m criteria such as task priority and availbale
resources. The navigators run on launch machines, while
the servers are running on compute engines. For a given
application, a navigator performs the following functions:

e Obtains a list of tasks that are ready to be executed;

The Gndscape serves as an abstract description of grid
resources that represents the current state of computing re-
sources. The navigators use it to make submission deci-
sions, while the servers use it to qualify submitted jobs. As
a result, the quality of scheduling and the overall efficiency
of the iiavigation system depend on how well the GridScape
is synchronized with task submissions and changes in the
state of agid resources.

.
We use three ways to update the Gridscape to achieve a

good synchronization. First, each server updates the Grid-
Scape when it changes the state of a task to (or from) Run-
ning, by subtracting from (or adding to) the Gridscape the
resources used by the task. Second, each monitor periodi-
cally updates the Gridscape based on timings of the NAS
Grid Benchmarks. Finally, each navigator can request an
update to the GridScape. The details of the Gridscape ac-
quisition process is described in [8].

4 The Martian Mission Site and Environ-
ment

The site of the mission at 278.8O EL and 8.3’ SA on the
Martian surface is shown on Figure 3 (left pane) and the
elevation map is shown on Figure 3 (right pane).

Figure 3. A stereo map (left pane) and eleva-
tion map (right pane) of the Martian airplane
mission area.

4.1 Atmosphere

The atmosphere of Mars is significantly different from
the atmosphere of Earth. Carbon Dioxide comprises about
95 percent of the atmosphere, and Nitrogen is second most
common at 3 percent. The density of the Martian atmo-
sphere is also significantly less than that of Earth’s. The
air pressure on Earth averages 1000 millibars, whereas the
pressure on Mars is about 8 millibars. It fluctuates through-
out the four seasons from a low of about 6.5 millibars in
summer to a high of about 10 millibars in winter. The low
air pressure makes lift and maneuvering more difficult for
aircraft.

The temperature is also fairly variable on Mars because
of the thin atmosphere. The surface temperatures range
from 145 degrees Kelvin to almost 300 degrees Kelvin.
There is no ozone shielding, so the W rays from the

sun can make the local temperatures less consistent. Even
though there is very little water on the surface of the planet,
clouds of water vapor commonly form. Dust storms are also
common and can last for many days at a time. All these fac-
tors contribute to highly variable temperature and pressure
conditions. The speed of sound is a value that is critical
to the performance of an aircraft, and is directly related to
the temperature and pressure. Therefore, an estimate will
be used for both values to give an approximate idea of a
normal flight on Mars.

Mars has another physical property that must be ac-
knowledged to accurately predict the flight of an aircraft.
Gravity is a force that must be opposed to fly an aircraft in
close proximity to any planet. Mars’s surface gravity is also
about one third of the strength of Earth’s. The lesser grav-
ity will make the aircraft more efficient when flying, but it
also affects an aircraft’s ability to take off and land. Wlth
less force on the wheels traditional braking methods must
be updated and augmented. [6]

4.2 The Martian Flyer

The Martian Flyer‘ (MF) is a delta-plane comprised
of a wing-integrated body, two movable elevons, and two
fixed winglets, Figure 4. The flier was designed for data-
gathering missions on the surface of Mars. The flier has
been designed for a cruise speed of about Mach 0.2. The
elevons can be adjusted individually from deflections of 10
degrees down to 20 degrees up to change the pitch, roll,
and yaw of the aircraft. The winglets were added to reduce
drag and increase lift. Because the design for the Martian
Flier only exists in data format on computers, it has not been
physically tested; however, it has been through rigorous vir-
tual testing using the Cart3D package. The Cart3D package
allows users to adjust the elevon settings, Mach number,
and other environmental characteristics to simulate condi-
tions on Mars.

Figure 4. MF configuration with the rig..t
elevon down and a flow around it obtained
with C m 3 D .

‘The MF geometry was provided by Michael Aftosmis group

3 The Tra,xtory Space

The MF starts from a base on the Mars surface, flies over
a number of target points in the canyon. and returns back to
the base while spending as little energy as possible to over-
come the drag. The flyer takes advantage of the air updraft
along the warm slopes of the canyon while avoiding the
downdraft along the cold slopes. We estimate the updraft
as a function of the amount of the solar radiation obtained
by the slope during the current Martian day. It is a simple
function of the angle between the normal to the surface and
direction to the Sun’.

As an approximation of the space of all possible trajec-
tories we create a mesh of points at an elevation of H feet
above the surface and connect each point with the nearest
neighbors by edges, see Figure 5. Each trajectory consists
of parts of edges and parts of the circular arcs connecting
the edges (not shown in the picture). It can start/end at the
base, way point, or a target point. The vector of the x.ZF
velocity at the beginning of each segment is the calculated
velocity at the end of the previous se,gment. The optimal
trajectory is one that minimizes the drag along it.

5 Trajectory Optimization

To find the optimal trajectory for the MF we need to per-
form a complex data flow management We formulate this
management problem as scheduling of the tasks represent-
ing flow calculations along all fragments of the trajectory.
The dependencies between pairs of tasks are derived from
the trajectory continuity condition.

5.1 The Cart3D Package

The Carr3D package [3] is a production NASA package
used for high-fidelity inviscid analysis in conceptual aero-
dynamic design. It performs CFD analysis on complex ge-
ometries. A data flow graph of the Mars Flier test case is
shown in Figure 6 . It encapsulates six executables written in
FORTRAN and C . The package includes utilities for geom-
etry import, surface modeling, surface intersection. mesh
generation. flow simulation, and analysis.

The geometry of an aircraft in Curt3D is represented as a
collection of components, called a configuration. The con-
figuration is defined by the triangulation file (*.tri) which
describes the geometry of the aircraft. The triangulation
file is first run through a program called intersect which
produces a prespec file. The prespec file and the
i npu t . c3d file are what the cubes program requires for
execution.

The flow simulation starts with mesh generation by
cubes. Cubes produces topologically unstructured, adap-
tively refined. Cartesian meshes around the confi, ouration.
Reorder reorders the meshes (Mesh.c3d) produced by cubes
using a space-filling-curve ordering. FlowCurt takes these

2Currentlg we i go re effect of shadows on the updraft

Figure 5. Approximation grid for the trajecto-
ries of MF. White edges indicate edges with
updraft and black edges indicate edges with
down draft.

re-ordered meshes and partitions them on-the-fly onto the
assigned number of processors. MgPrep is the mesh coars-
ening module which creates coarse meshes from an initial
input mesh. These meshes are used infiwCurt for multi-
I mid convergence acceleration. The flow simulation in$ow-
Curt is a scalable, multilevel solver for the Euler equations
governing the inviscid flow of a compressible fluid. The clic
program is used to analyze the simulated flow.

In our “Mars Flyer” test case cubes created a mesh with
about 825,000 cells. FLowCQ~~ performed 100 iterations on
the original mesh, 92 iterations on the first and second lev-
els of refinement. and 8 iterations on the third level of re-
finement. There were 180.000 cells produced, and the final
efficiency for 16 processors was estimated at approximately
70-75 percent.

5.2 The Wave Front Algorithm

Predicting a fd! flight trajectory on Mars is quite com-
plicated. Breaking it down into smaller pieces ensures that
we will test most possibilities; however, the pieces should

Figure 6. The Mars Flyer test case of the
Cart3D package. Grey boxes show executa-
bles, other boxes show I/O files.

not be tested independently because a flight path depends
on the incoming trajectory from a previous path. There-
fore, our wavefront algorithm ensures that each trajectory
waits to be calculated until the optimal incoming trajectory
is found. Once the optimal incoming trajectory is estab-
lished, the next trajectories can be tested to find the subse-
quent optimal trajectories until a trajectory from the home
base to the desired destination is found.

The problem of finding a tour of minimum length that
visits given graph vertices is known as the Traveling Sales-
man Problem. The general problem is NP-hard, however,
the 3-dimensional Euclidian problem can be solved approx-
imately in polynomial time by Arora’s algorithm. In our
case, there are only 4 graph vertices to visit so that even
complete enumeration looks efficient. However, the length
of an edge in a tour (represented as work of a drag along it)
depends on the previous edge of the tour (due to the con-
tinuity of the MF trajectory) so that our problem can not
be directly reduced to the salesman problem. Therefore, we
use the heuristic wave-front algorithm to solve the trajectory
optimization problem .

We define depth of a vertex (way points or the targets)
of the trajectory graph as the minimum number of edges
on a path connecting the vertex with the base. Obviously,
vertices of depth d are connected only with vertices of the
depth, d - 1, d, and d + 1 The algorithm starts by sending
copies of the MF state from the base along edges to the way
points of depth 1. Each copy is processed by Cart3D to
calculate drag along the edge. Then, on even iterations it
sends copies of the MF state from all way points of depth d
along edges to points of depth d. On odd iterations it sends
copies of the MF state from all way points of depth d to
points of depth d + 1. The algorithm records the path of
minimal energy from the base to the current way point. To
maintain continuity of the trajectory the algorithm takes the

speed and altitude of the MF on the last edge of the path
and uses them as initial conditions of the copies of the MF
state sent to the other way points. Then assuming that the
velocity vector is constant along the segment, the drag is
computed using Cart3D. If newly incoming edge belongs
to a path of smaller energy then the current path is replaced
with the more efficient one. The iterations continue until all
targets are visited.

Then the algorithm takes the speed and altitude of the
MF on the optimal path incoming to each target as initial
conditions for the outgoing edges and repeats the iterations
using the targets as a new bases. As a result, we will get
pairwise shortest paths among the base and all targets. Then
we use the “go to the nearest unvisited neighbor” heuristic
to build a a trajectory from the base that visits all targets and
comes back to the base. This path may have discontinuities
in velocity at some targets. To compensate for the disconti-
nuity we compute a maneuver that transits the MF between
the trajectories in these targets and add these maneuvers to
the final trajectory.

Currently, our algorithm only calculates the drag along
the straight line segments of the trajectory, ignoring transi-
tions and corners. The final version of our algorithm will
account for the drag generated by turns and use all the drag
values to determine the final optimal trajectory.

5.3 Scheduling Dependent Tasks

For finding the optimal trajectory by the Wave Front Al-
gorithm we need to execute many tasks using Cart3D with
various flight parameters. The trajectory continuity con-
dition implies dependencies between the flight parameters
along the incoming and outgoing edges of each way point.
These dependencies are represented as an acyclic directed
task graph (e.g the task graph of the trajectories from the
base to the targets had 393 nodes and 1402 arcs).

An algorithm called the ”Allocator” was devised to
schedule the tasks of the graph using subsets of the proces-
sors of a supercomputer. The algorithm uses information
from the Gridscape to determine the available resources
and ultimately matches all the nodes (i.e. tasks) with a cer-
tain number of processors to minimize the total tuni-around
time. Nodes are executed in a data flow manner: a node is
assigned for execution as soon the data have arrived along
all incoming arcs.

We keep the information about current state of the sys-
tem resources (available, busy, estimated release time) in
the Gridscape. The scheduler keeps track of the available
and unavailable processors, along with the nodes that are
ready and those that are waiting for other nodes to com-
plete. During each cycle of the scheduler, it attempts to
allocate all the available, idle processors to tasks that are
ready to execute. Processors are distributed evenly between
the ready nodes, and the left-over processors that cannot be
evenly distributed are allocated to the nodes that have the
largest number of outgoing arcs. Once all the processors
have been distributed, the nodes allocated to processors be-

!

gin execution. When a node has finished, the processors it
used become idle and are used to execute another task as-
signed to them by the Allocator.

The Allocator scheduler currently statically schedules
the processors because it is the simplest way to not only
predict the turn around time, but also improve the schedule
without having to run lengthy, expensive tests using valu-
able supercomputer time. The run time for each task is very
predictable because the tasks differ only slightly in the areas
of Mach number, sideslip angle, and angle of attack, which
negligibly affects turn-around time. The Cart3D code was
tested with different numbers of processors to determine ac-
curate simulated run times. The simulation abilities of our
scheduler allow the user to see speedup capabilities of ap-
plications using different numbers of processors or config-
urations of the scheduling algorithm, see Figure 7.

Speedup of Cart3D Execution Time

20

15

a
U

II rn
g 10

5

0

I- Ca1t3D Muitlthreading Performand
I+=-- 1-1 Performance 1

5 10 15
Number of Processors

Figure 7. Scalability of Cart3D when computing
a single MF configuration.

In Figure 8 the graph of the performance gainsAosses
from the simulation predictions can be seen. Running the
tasks with no dependencies (where no trajectories depend
on incoming trajectories) is the ideal case because no tasks
are required to sit idle while other tasks finish. The figure
shows that using our algorithm with dependencies returns
only small performance losses fiom the ideal case for small
number of processors. The tuned algorithm in the figure
gives more processors to tasks that pass their resuits to many
other tasks. The tuned algorithm performs better in most,
but not all cases.

6 Eqeriments

The navigation system is implemented in Java. It uses
the Java Registry to install task services on hosts used for
experiments a d the Java Remote Met!!od Invocation (RMI)
to run the benchmark tasks and to communicate data be-
tween them. In addition, it uses the Java Native Interface

40

30

a
U

(1 Y;

20

10

Speedup of Task Graph Execution Time

,--- vnth dependenaes
1 x-7' wth dependences, tuned
I . -

l

Ideal Performance (no dependenaesj

4'

10 20 30
011. 0

Number of Processors

Figure 8. Speedup of the task graph execution
time. The schedules were generated by two vari-
ants of the Allocator scheduler. For comparison
we show the speedup which can be obtained while
ignoring all intertask dependencies.

(JM) to invoke the Carf3D tasks written in C or FORTRAN.
We tested the navigation system on the =gid - its nodes are
shown in Table 1. During our experiments all grid machines
had normal production loads.

To launch jobs, we implemented the j grun command,
which has an interface similar to mpirun. Gridscape per-
formance was acquired by using the Java version of ED.S
of the NAS Grid Benchmarks [9]. We used automatic sub-
mission of the servers to the queue. requesting 16. 32 or
64 processors on the machines controlled by the PBS batch
scheduler.

At the time of submission of the paper we were not able
to finish our computations and find the optimal trajectory
itself due to a significant configuration change of the NAS
computer system. In a future study we are planning to have
the optimal trajectory and measured (not estimated) e%-
ciency of the schedule produced by the Allocator.

7 Conclusions and Future Work

We have described an architecture and implementation
of an Application Navigation System (AM) that automates
execution of the applications comprised of many dependent
tasks. The ANS system automatically acquires a map of the
available compute resources and assigns tasks to them. The
system chooses resources that provide the fastest advance
of application tasks and, as a result, achieves 64% efficiency
when solving a trajectory optimization problem.

In this paper we laid out a framework for scheduling
and execuaon of dependent tasks. This opens many areas
of research involving the trajectory optimization problem
and improving scheduling of the tasks. In particular we are

Machine Name NP Clock Rate Peak Perf. Memory
(MHz) (GFLOPS) (GB)

Maker Architecture Batch
Svstem

1 I ‘

02K I 3 2 I 250
02K1 1 128 1 250

planning to increase precision of our model. The first step
would be to calculate general drag values for various types
of turns. Ultimately the model should calculate the drag
needed for the exact turn. The second step is to use a trajec-
tory space which is adapted to the terrain and use specifics
of the trajectory space to improve scheduling by looking
ahead. We will improve our scheduling algorithm and re-
duce total amount of work by pruning trajectories with high
drag to eliminate computations along suboptimal edges.

Acknowledgments. We want to thank Michael
Aftosmis, Scott Murman, and Marian Nemec (all NASA
Ames) for providing the Cart3D package and the Martian
Flyer geometry triangulation. Also we thank Timothy Sand-
strom for providing Mars elevation data.

, . .

16 8 SGI 1 Origin2000 . -

64 32 SGI I Ori~in2000 PBS

References

-~

03K1
03K2
03K3

[11 A. Al-Theneyan, P. Mehrotra, M. Zubair. “A Resource
Brokering Infrastructure for Computational Grids.”
LNCS 2552, pp. 463-473,2002.

I I , Y I

512 400 400 262 SGI Origin3000 PBS
1024 600 1200 256 SGI Origin3800 PBS
256 400 200 98 SGI Origin3000 PBS

[2] E Berman, R. Wolski, S. Figueira, J. Schopf, S. Shao.
“Application Level Scheduling on Distributed Hetero-
geneous Networks.” In Proceedings of Supercomput-
ing 1996,1996.

[3] Cart3D. http://people.nas.nasa.gov/-aftosmis/cart3d
/cart3Dhome. html

[4] H. Casanova, A. Legrand, D. Zagorodnov, and E
Berman. “Heuristics for scheduling parameter sweep
applications in grid environments”. In 9th Hetero-
geneous Computing Workshop (HCW), pp. 349-363,
2000.

[5] H. Chen, M. Maheswaran. “Distributed Dynamic
Scheduling of Composite Tasks on Grid Computing
Systems”. In 16th International Parallel and Dis-
tributed Processing Symposium, IPDPS 2002, April
15-19 2002.

[6] P. Cattermole. Mars: “The Story of the Red,Planet.”
Chapman & Hall, London, England: 1992

[7] Grid Application Development Software (GrADS)
Project. http://www.hipersoft.rice.edu/grads.

[8] M.A. Frumkin, R. Hood. “Using Grid Benchmarks
for Dynamic Scheduling of Grid Applications” Pro-
ceedings of the 15th IASTED International Confer-
ence “Parallel and Distributed Computing and Sys-
tems” (PDCS’2003), Marina Del Rey, USA, Nov 3-5,
2003, p. 31-36.

[9] M.A. Frumkin, Rob E Van der Wijngaart. “NAS Grid
Benchmarks: A Tool for Grid Space Exploration.”
Cluster Computing 5, pp. 247-255,2002.

[IO] Y.-K. Kwok, I. Ahmad “Static Sceduling Algorithms
for Allocating Directed Task Graphs to Multiproces-
sors.’’ ACM Computing Surveys Vol. 31, issue 4 pp.
406-47 1,2002.

S.S. Vadyhiyar, J.J. Dongarra. “A Metascheduler for
the Grid.” Proceedings of HPDC-I 1,23-26 July, 2002,
Edinburgh, Scotland, pp. 343-35 1.

[I21 R. Wolski, N.T. Spring, J. Hayes. “The Network
Weather Service: A Distributed Resource Per-
formance Forecasting Service for Metacomputing.”
J. Future Generation Computing Systems, 1999,
h ttp://n ws.npaci .edu/NWS/.

[131 A. Boyle. Proposal for Mars Exploration by Robotic
Plane, 1998 http://www.robotbooks.cornlMars-
plane.htm/.

[141 M. Ravine. Airplane Propsed for Mars Survey, 1998
http://www.msss.com/mageielease/.

